Previous experimental and theoretical studies on bare gold clusters in gas phase have suggested that hydrogen atom can mimic the gold atom. Motivated by this interesting finding, I investigated structures and reactivities of hydride (H⁻)-doped Au superatoms by using mass spectrometry, single crystal X-ray crystallography and density functional theory (DFT) calculations. The platforms I chose for this study were phosphine-protected Au-based clusters [MAu₈(PPh₃)₈]²⁺ (MAu₈; M = Au⁺, Pd, Pt), that can be viewed as oblate-shaped Au superatoms with a semi-closed electronic configuration of $(1S)^2(1P)^4$.

In situ electrospray ionization mass spectrometry (ESI-MS) demonstrated the formation of hydride adducts [HMAu₈(PPh₃)₈]⁺ (HMAu₈; M = Au⁺, Pd, Pt) upon the mixing of the solutions of NaBH₄ and MAu₈. *In situ* NMR revealed that the conversion to HMAu₈ proceeded almost quantitatively and the H⁻ was bound to the central M atom in HMAu₈. DFT optimized structures of the corresponding models [HAu₉(PMe₃)₈]²⁺ and [HAu₉(PMe₃)₈]²⁺ exhibited a nearly spherical shape and had a closed electron configuration of (1S)²(1P)⁶. The formal charge states of both H and peripheral Au atoms were neutral, indicating that the H atom acts as a dopant in Au superatom and that HMAu₈ can be viewed as a hydride-doped 8e superatom. This is the first demonstration that the Au-H analogy proposed for model Au clusters in gas phase can be applied to ligand-protected Au superatoms.

Inspired by the previous reports that hydrogens on the Pd colloidal particles can reduce other metal ions, I studied the chemical properties of HMAu₈ toward coregrowth reactions. Addition of Au(I) complex to the HAu₂ solution selectively yielded the well-know magic Au clusters, [Au₁₁(PPh₃)₈Cl₂]⁺ with 8 valence electrons. *In situ* ESI-MS revealed that [Au₁₁(PPh₃)₈Cl₂]⁺ was formed by sequential addition of two AuCl units while releasing a proton (H⁺). In case of HPdAu₈, in contrast, the sequential growth proceeded without H⁺ release to yield novel hydride-containing [HPdAu₁₀(PPh₃)₈Cl₂]⁺ with a good yield. DFT calculation suggested that this growth reaction is initiated by a nucleophilic attack of HMAu₈ to AuCl via interaction with the sterically-exposed 1P orbital. This nucleophilic addition can be used for the doping of other metals. Actually, new trimetallic alloy clusters [HPdAq₂Au₈(PPh₃)₈Cl₂]⁺ and [HPdCu₂Au₈(PPh₃)₈Cl₂]⁺ could be synthesized by the regioselective doping of two Aq(I)Cl and Cu(I)Cl complexes, respectively, to HPdAu₈. Moreover, the target electrophiles can be extended to Au(I)L complexes (L represent thiolate or alkynyls) for surface modification. A general formula of MAu₂₄(ligand)₁₈ having an icosahedral M@Au₁₂ superatomic core could be synthesized selectively in a large scale (~hundreds mg).

In summary, I demonstrate for the first time that (1) H acts as a dopant in Au superatoms rather than an electron withdrawing ligand as known in Ag and Cu clusters and (2) H-doped superatoms HMAu₈ are highly reactive toward a variety of organometallic complexes. This work provides not only a new efficient bottom-up synthetic routes of ligand-protected superatoms, but also an opportunity to establish the structures-properties correlations for these artificial elements in nanoscale.